Microsoft Word - lf99-11821_final-BivolaruDanehy_AIAA2011_0802.docx
نویسندگان
چکیده
A novel approach to simultaneously measure the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is described. To demonstrate the technique single-shot spectra of elastic scattered light are obtained in a near zero velocity H2air Hencken burner flame and simultaneously in an N2-filled gas cell. A simplified Gaussian distribution model to the scattered light spectra is used to obtain the flame properties. Corrections to this model are applied at lower gas temperatures when the simplified Gaussian approximation is no longer suitable. The near-zero measured velocity as a function of the measured flame temperature, and a comparison of the measured flame density and temperature with the perfect gas law are presented.
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011